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ABSTRACT

We demonstrate the use of a diffusion tensor atlas to per-

form probabilistic tractography in diffusion tensor data. The

tensors from eleven subjects are normalized into a common

space by optimizing the similarity between tensors explicitly.

The distribution of tensor orientations in the atlas space forms

a prior distribution for the fiber orientation that is defined by

the local anatomy, in contrast to previous curvature priors that

restrict the local curvature of all tracts equally. We demon-

strate the method in a single subject and compare tracking

with a uniform prior, with a curvature prior, and with the atlas

prior. The atlas information allows us to track further along

the fornix and cingulum than the other priors.

Index Terms— Diffusion, tensor, probabilistic tractogra-

phy, atlas

1. INTRODUCTION

Streamline tractography methods [1] aim to trace the path of

white matter fiber tracts using the local fiber-orientation esti-

mates derived from diffusion-weighted MRI. Uncertainty in

fiber tracking comes from several sources, including noise,

partial volumes within voxels, and complex fiber architecture

that cannot be modeled by the diffusion tensor [2]. Heuristic

priors on the local fiber orientation, such as a restriction on the

curvature of the fiber pathway [3], or spatial regularization of

diffusion tensors in local neighborhoods [4], are often used to

reduce erroneous streamline traces. This work leverages an

atlas of diffusion-tensor images to inform the prior probabil-

ity of the local fiber orientation. The prior is evaluated as part

of a Bayesian framework for probabilistic tractography.

2. MATERIALS AND METHODS

2.1. Data Acquisition

Twelve adult subjects were scanned in a Siemens Trio 3T

scanner. Reconstructed voxel dimensions were 2.2 mm
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isotropic on a grid of 112 × 112, with 57 contiguous slices.

The DWI protocol was 12 measurements at b = 0 and 30 at

b = 1000 s mm−2, each at independent gradient orientations

spread isotropically on the sphere. The b=1000 measure-

ments were repeated three times, giving a total of 102 DW

images including those at b = 0. A multi-channel head coil

was used with Siemens GRAPPA parallel imaging (factor

2.5).

2.2. Atlas construction

The white matter atlas is generated from the DT images of

eleven subjects using an iterative procedure [5] that lever-

ages a high-dimensional tensor-based registration algorithm

to explicitly optimize tensor orientation [6] The atlas contains

eleven diffusion tensors in each voxel, each with a principal

eigenvector �e1. Once the tensors from all subject images are

mapped into a common space, the dyadic tensor [7]

Dy =
1
11

11∑
i=1

�e1i�e
T
1i , (1)

is calculated in each voxel. This tensor is distinct from the

diffusion tensor in that it contains only orientation informa-

tion about the mean and variance of the principal directions

from the subjects. Dy has eigenvalues t1 ≥ t2 ≥ t3, where

t1 + t2 + t3 = 1, when the tensors from all subjects are per-

fectly aligned, t1 = 1 and when they are exactly uniformly

distributed, t1 = t2 = t3 = 1/3.

2.3. Bayesian PDF estimation

The tractography algorithm is based on the Bayesian frame-

work presented by Friman et al [8]. We use the “constrained

model of the diffusion data, where the minor diffusion ten-

sor eigenvalues are constrained to be equal, yielding a five-

parameter model of a diffusion-weighted measurement

S = S0 exp(−αb) exp(−βb[�g · �x]2) , (2)

where S0 is the estimated signal at b = 0, �g is the diffusion-

weighting gradient direction, and α and β are positive scalars.

The parameter of interest to us is the fiber orientation �x. The

“nuisance parameters” are θ = [S0, α, β]. These parameters
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have Dirac priors centered on the maximum-likelihood esti-

mate, as suggested in [8], which simplifies the calculation of

the posterior distribution on the fiber orientation �x, given θ
and the diffusion-weighted data Δ:

P (�x, θ|Δ) =
P (Δ|�x, θ)P (θ)P (�x)

P (Δ)
. (3)

The denominator in equation 3 is

P (Δ) =
∫

�x,θ

P (Δ|�x, θ)P (θ)P (�x) . (4)

Because of the assumption of dirac priors on θ, the integra-

tion in equation 4 is reduced to integrating over potential ori-

entations of �x. The likelihood of each diffusion-weighted

measurement in Δ, given a particular �x is modeled as a nor-

mal distribution with mean S (from equation 2) and variance

σ2 estimated independently from the data in each voxel [9],

exactly as in [8]. The likelihood, P (Δ|�x, θ), is estimated

for each of 1922 directions, evenly spread over the sphere

[10]. The integral in equation 4 is approximated as the sum

of the integrand, P (Δ|�x, θ)P (θ)P (�x), which is evaluated at

all 1922 directions.

The key difference between [8] and the present work is

that Friman et al use a fixed prior on the fiber orientation,

P (�x), which depends on the previous direction, while in the

present work we use a prior derived from the atlas. In [8], for

step i in the tracking process, the prior for an orientation �xi is

P (�xi) = [�xi · �xi−1]γ (5)

when [�xi ·�xi−1] is positive and zero otherwise. The parameter

γ is a user-tunable parameter that is set to 1 in [8]. Thus

the prior penalizes high curvature of the fiber trajectory. This

prior is applied equally to all paths in the brain, which can

terminate tracking prematurely in tracts with high curvature.

In contrast, the atlas prior is derived from the dyadic tensor of

the atlas, which reflects the degree of alignment of the local

anatomy over the population. Specifically, for a voxel in the

subject space where tracking takes place,

P (�x) = M(1/2, 3/2, κ)−1 exp(κ[�m · �x]2) , (6)

where �m is the principal eigenvector of the dyadic tensor, i.e.

the mean of the 11 fiber orientation estimates derived from

the atlas, M is a normalization constant that ensures P (�x) in-

tegrates to unity, and κ is a scalar parameter that describes the

concentration of the distribution, which is high when there is

good alignment of the orientations in the atlas. We calculate

�m and κ from the dyadic tensors in the atlas, after warping the

dyads into the subject space using the algorithm in [6]. Figure

1 shows a slice of the atlas after transformation into the sub-

ject space. The image on the left is the fractional anisotropy

of the atlas mean diffusion tensor, and the image on the right

shows t1 of the dyadic tensors in the same slice.

The procedure for fitting κ given a dyadic tensor comes

from Mardia and Jupp [11]. When κ = 0, the distribution is

uniform. As κ increases, the prior probability density func-

tion (PDF) P (�x) becomes more concentrated about �m, with

small-circle contours centered on±�m, so orientations that de-

part from the atlas mean are penalized more heavily when

there is strong alignment of the local fiber orientation esti-

mates from all subjects. If the dyadic tensor is oblate, as we

may expect in fiber crossing regions, then κ may be negative,

in which case �m in equation 6 is the third eigenvector of Dy

and the prior probability is maximum along the great circle

normal to �m. In the major white matter tracts, t1 is high and

hence κ is large and positive.

Fig. 1. Left: slice of the diffusion-tensor atlas fractional

anisotropy warped into the subject space for tracking. Right:

eigenvalue t1 of the dyadic tensors from the atlas, transformed

into subject space.

2.4. Probabilistic tractography

Given the posterior PDF on �x in each voxel, tracking proceeds

from a seed point in steps of 0.5 mm, using the interpolation

scheme described in [12]. We track 1000 probabilistic stream-

lines from each seed point. At each step in the tracking, the

local orientation of the streamline is randomly sampled from

the set of 1922 directions, where the probability of select-

ing a vector �x is determined by the posterior in equation 3.

The tracking stops if the streamline reaches the surface of the

brain, if it intersects itself, or if it curves by more than 80

degrees over the largest voxel dimension (2.2 mm). The trac-

tography method, including the Bayesian PDF estimation is

implemented in the open-source Camino toolkit [13].

3. RESULTS

We demonstrate the method in one subject not used in the at-

las construction. Seed regions of interest (ROI) were defined

manually in the image space of the subject. The connectiv-

ity of each seed ROI to another voxel in the brain is defined

as the number of probabilistic streamlines that intersect the
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voxel. The results are thresholded for display; connectivity

greater than 1% of the total number of probabilistic stream-

lines in the ROI is shown. The results are rendered within the

T1-weighted image of the subject using MRIcro [14]. Fig-

ure 2 shows a seed ROI placed in the fornix. This path is

difficult to track because of its high curvature and proxim-

ity to other whiter matter tracts. Using a curvature prior re-

sults in a small increase in connectivity along the fiber path,

but the atlas prior allows more fibers to track further along

the tract. Figure 3 shows results of tracking from an ROI in

the cingulum, another tract that is difficult to recover using

tractography. Again, the atlas prior allows us to track further

along the pathway, though there are some false-positive inter-

hemispheric connection probabilities in all three images.

4. CONCLUSIONS

The atlas provides an anatomically-based prior that appears

to improve tractography along known pathways. The prior

is derived directly from the study population after normaliza-

tion. The confidence assigned to the prior in each voxel is

calculated from the local variability in the study population,

with the prior having stronger influence when the axis of prin-

cipal diffusion is well aligned across subjects. In this work,

we have demonstrated tractography in a subject image that is

not used in the atlas construction. The experimental results

are similar when the subject is also included in the atlas con-

struction (results not shown).

The atlas prior is specific to the local white-matter struc-

ture in the population, whereas curvature priors are typically

specified once for the entire tract, regardless of local anatomy.

Limitations in the present work include the small sample size,

which we shall increase in future work. Another innovation,

which may be possible with a larger data set, would be to use

a more complex prior distribution, such as the Bingham dis-

tribution, that can model a prior PDF with elliptical contours.

Future work will include permutation testing to assess the re-

producibility of the atlas prior.
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(a) Tracking with a uniform prior

(b) Tracking with a curvature prior

(c) Tracking with the atlas prior

Fig. 2. Results from probabilistic tracking in the left fornix.

The arrow in the first figure indicates the seed point common

to all images.

(a) Tracking with a uniform prior

(b) Tracking with a curvature prior

(c) Tracking with the atlas prior

Fig. 3. Results from probabilistic tracking in the right cin-

gulum. The arrow in the first figure indicates the seed point

common to all images.
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